Periodic Solutions of a Model for Tumor Virotherapy

نویسندگان

  • Daniel Vasiliu
  • Jianjun Paul Tian
  • JIANJUN PAUL TIAN
چکیده

In this article we study periodic solutions of a mathematical model for brain tumor virotherapy by finding Hopf bifurcations with respect to a biological significant parameter, the burst size of the oncolytic virus. The model is derived from a PDE free boundary problem. Our model is an ODE system with six variables, five of them represent different cell or virus populations, and one represents tumor radius. We prove the existence of Hopf bifurcations, and periodic solutions in a certain interval of the value of the burst size. The evolution of the tumor radius is much influenced by the value of the burst size. We also provide a numerical confirmation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The replicability of oncolytic virus: defining conditions in tumor virotherapy.

The replicability of an oncolytic virus is measured by its burst size. The burst size is the number of new viruses coming out from a lysis of an infected tumor cell. Some clinical evidences show that the burst size of an oncolytic virus is a defining parameter for the success of virotherapy. This article analyzes a basic mathematical model that includes burst size for oncolytic virotherapy. The...

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...

متن کامل

Coordination of promotional effort, corporate social responsibility and periodic review replenishment decisions in a two-echelon socially responsible supply chain

In this paper, we explore the issue of coordination in a manufacturer-retailer supply chain where the manufacturer is socially responsible and invests in CSR activities. On the other hand, the retailer invests in promotional efforts and uses a periodic review order-up-to policy for replenishing items. First, the decentralized decision-making structure is modeled to calculate the minimum accepta...

متن کامل

PERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS

There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010